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 Stochastic programming represents uncertain parameters by a 

random vector - a classical stochastic optimization:

 Classical assumptions in stochastic programming: 

 The probability distribution of the random parameter vector is 

independent of decisions - exogenously given         relaxing it 

requires addressing endogenous uncertainty.

 The "true" probability distribution of the random parameter vector 

is known relaxing it requires addressing distributional 

uncertainty.

Uncertainty in optimization
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 The underlying probability space may depend on the decisions:

 Decisions can affect the likelihood of underlying random future events. 

 Example. Pre-disaster planning – strengthening/retrofitting transportation 

links can reduce failure probabilities in case of a disaster (Peeta et al., 2010).

 Decisions can affect the possible realizations of the random parameters.

 Example. Machine scheduling - stochastic processing times can be 

compressed by control decisions (Shabtay and Steiner, 2007).

Endogenous uncertainty
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 Its use in stochastic programming remains a tough endeavor, and is far 

from being a well-resolved issue (Dupacova, 2006; Hellemo et al., 2018).

 Mainly two types of optimization problems (Goel and Grossmann, 2006): 

 decision-dependent information revelation 

 decision-dependent probabilities (literature is very sparse)              our focus

 Stochastic programs with decision-dependent probability measures 

 Straightforward modeling approach expresses probabilities as non-linear functions of 

decision variables and leads to highly non-linear models.

 A large part of the literature focuses on a particular stochastic pre-disaster investment 

problem (Peeta et al., 2010; Laumanns et al., 2014; Haus et al., 2017).

 Existing algorithmic developments are mostly specific to the problem structure.

Endogenous uncertainty
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Distributional uncertainty

 In practice, the "true" probability distribution of uncertain model 

parameters/data may not be known. 

 Access to limited information about the prob. distribution (e.g. samples).

 Future might not be distributed like the past.

 Solutions might be sensitive to the choice of the prob. distribution.

 Distributionally robust optimization (DRO) is an appreciated approach 
(e.g., Goh and Sim, 2010; Wiesemann et al., 2014, Jiang and Guan, 2015).

 Considers a set of probability distributions (ambiguity set).

 Determines decisions that provide hedging against the worst-case

distribution by solving a minimax type problem.

 An intermediate approach between stochastic programming and traditional 

robust optimization.
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DRO - Choice of ambiguity set

 Moment-based versus statistical distance-based ambiguity sets

 Exact moment-based sets typically do not contain the true distribution.

 Conservative solutions: very different distributions can have the same lower 

moments and the use of higher moments can be impractical.

 Choice of statistical distance: (Bayraksan and Love, 2015; Rubner et al. 1998)

Two of the more common ones: Phi-divergence versus Earth Mover’s Distances

 Divergence distances do not capture the metric structure of realization 

space.

 In some cases, phi-divergences limit the support of the measures in the set. 

 Our particular focus - Wasserstein distance with the desirable properties:

• Consistency, tractability, etc.
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A general class of Earth Mover’s Distances 

(EMDs)

 In a pair                                                    is a rand. var. on the prob. space 

 :  a measure of dissimilarity (or distance) between real vectors (transportation cost)

 For any two measurable spaces               and               , the function δ induces an EMD

 Minimum-cost transportation plan

:transportation 

plan X 

Y

(empirical dist.) 
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A general class of Earth Mover’s Distances

 Transportation problem – discrete case:

 Wasserstein-p metric: 

 Total variation distance (also a phi-divergence distance); the EMD 

induced by the discrete metric 
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DRO - Decision-dependent ambiguity set

 Incorporate distributional uncertainty into decision problems via EMD 

balls centered on a nominal random vector

 Continuous EMD ball: ambiguity both in probability measure and 

realizations

 Discrete EMD ball: the probability measure can change while the 

realization mapping     is fixed
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Continuous EMD ball case:

Discrete EMD ball case:

• DRO with Wasserstein distance has been receiving increasing attention 

 See, e.g., Pflug and Wozabal, 2007; Zhao and Guan, 2015; Gao and Kleywegt, 2016; 

Esfahani and Kuhn, 2018; Luo and Mehrotra, 2017; Blanchet and Murthy, 2016.

• Using a decision-dependent ambiguity set: an almost untouched research area until recently

 Zhang et al., 2016; Royset and Wets, 2017, Luo and Mehrotra, 2018.

• A very recent interest on a related concept in the context of robust optimization 

 Lappas and Gounaris, 2018, Nohadani and Sharma, 2018; using decision-dependent 

uncertainty sets.

DRO with decision-dependent ambiguity set
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Continuous EMD ball case:

Discrete EMD ball case:

 Incorporating risk is crucial for rarely occurring events such as disasters.

 Law invariant coherent risk measures defined on a standard Lp space. 

 Any such risk measure can be naturally extended to p-integrable random 

variables defined on an arbitrary probability space

 Our main focus: Conditional value-at-risk (Rockafellar and Uryasev, 2000).

Risk-averse variants
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Theory of risk functionals

 A risk functional ρ assigns to a random variable a scalar value, providing a 

direct way to define stochastic preference relations:

 Desirable properties of risk measures, such as law invariance and coherence, 

have been axiomized starting with the work of Artzner et al. (1999).

 Law invariance: Functionals that depend only on distributions of random vars. 

 Coherence (smaller values of risk measures are preferred):

 Monotonicity:              X� Y a.s. ⇒ ̺(X) � ̺(Y)

 Translation equivariance: ̺(X+ λ) = ̺(X) + λ

 Convexity:    ̺(λX + (1- λ)Y) � λ̺(X) + (1-λ)̺(Y)  for λ∈ [0,1]

 Positive homogeneity:  ̺(λX) = λ̺(X)    for λ ≥ 0

 CVaR serves as a fundamental building block for other law invariant coherent 
risk measures (Kusuoka, 2001); supremum of convex combinations of CVaR
at various confidence levels.
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 Value-at-risk (α-quantile): VaR0.95(V) is exceeded only with a small probability 

of at most 0.05.

 If unlucky (5% worst outcomes), the expected loss is CVaR0.95(V) (shaded area).

 Alternative representations – Discrete case (vi with prob pi, i∈ [n]):

0

α

VaR
α

(V)

1
FV

Conditional Value-at-Risk (CVaR)

0

1

α

VaR
α

(V)

FV
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Formulations - Continuous EMD ball case

 Robustification of risk measures

 Outcome mapping has a bilinear structure:

 Law invariant convex risk measure                         is well-behaved with factor C.

 Wasserstein-p ball of radius κ centered on a random vector

 Key result of Pflug et al. (2012): 

 Reformulation of the DRO problem under endogenous uncertainty:



ICERM, Brown University, June 26, 2019 15

Formulations- Discrete EMD ball case

Robustifying risk measures in finite spaces

 The closed-form in the continuous case is not valid.

 Using LP duality, the supremum involved in robustification of certain risk 

measures can be replaced with an equivalent minimization.

 The robustified CVaR value
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 A simple illustrative portfolio optimization with three equally weighted assets

 Nominal distribution:

 Ten equally likely scenarios

 Randomly generated losses

 Robustified CVaR0.5 of portfolio loss

 Ambiguity set: Wasserstein-1 ball

 Varying radius κ

 Continuous ball

 Loss realizations are ambiguous

 Discrete ball

 Loss realizations are fixed

 Only probabilities are ambiguous

Robustification: continuous vs. discrete balls
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Formulations - Discrete EMD ball case

 For ρ=CVaRα , minimax DRO problem as a conventional minimization:

 Analogous, although more complex, formulations can be obtained for a

general class of coherent risk measures

 the family of risk measures with finite Kusuoka representations.

 Provide an overview of various settings leading to tractable formulations.
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Tractable formulations - Discrete EMD ball 

 Nominal realizations are decision-independent, and decision-dependent outcomes 

and scenario probabilities can be expressed via linear constraints 

 Quadratic program with linear constraints

 Both nominal realizations and outcomes are decision-independent 

 Using the discrete metric

 This metric allows to use total variation distance-based balls as ambiguity sets.

 Still contains highly non-trivial instances of practical interest; pre-disaster planning 

(for strengthening a transportation network) and stochastic interdiction problems.
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 Nominal realizations are decision-dependent, and the decision-dependent 

outcomes and scenario probabilities can be expressed via linear constraints 

 Using the Wasserstein-1 metric:

 Mixed-binary quadratic program with quadratic constraints

 Make use of comonotone structure in the data to reduce the constraints of type (1)-(2), 

along with the corresponding binary and auxiliary variables.

Tractable formulations - Discrete ball case
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Stochastic pre-disaster investment planning

 Consider a transportation network where the links are subject to random 

failures in the event of a disaster.

 each link is either operational or non-operational

 the binary random variable: ξl =1 (if link l survives) and ξl =0 if it fails.

 Select the links to be strengthened to reduce their failure probabilities.

 No strengthening: xl=0  and σl
0 : link survival prob.

 Strengthening (with cost cl): xl=1  and σl
1 : link survival prob. 

 Decision-dependent probabilities:
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Stochastic pre-disaster investment planning

 Improve post-disaster connectivity

 Random outcome: weighted sum of shortest-path distances between a number 

of O-D pairs.

 Underlying risk-neutral stochastic program (Peeta et al. 2010):

 Solve a shortest path problem for each O-D pair and scenario

 Key challenge: expressing the decision-dependent scenario probabilities

 A straightforward approach results in highly non-linear functions of 

decision variables (under independence assumption):
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Stochastic pre-disaster investment planning

 Benefit from an efficient characterization of decision-dependent scenario 

probabilities via a set of linear constraints (Laumanns et al. 2014)

 Our proposed risk-neutral or CVaR-based DRO-extension: 

 A natural choice of ambiguity set – total variation distance-based EMD 

ball using the discrete metric:
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Stochastic pre-disaster investment planning

 Reformulation: mixed-binary quadratic prog. with linear constraints

 Realizations                                                   ;   Baseline Probs.:

Recursive 

distribution shaping
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Robustification in finite spaces

 Robustified expectation          

 For the total variation distance

(Jiang and Guan, Rahimian et al., 2018)

 The change of variables
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Robustification in finite spaces

 Robustified expectation          

 Optimum can be attained when 

 for at least one j∈ [n]: 
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Stochastic pre-disaster investment planning

 Reformulation: mixed-binary quadratic prog. with linear constraints

 Towards an MIP formulation: 

 McCormick envelopes and reformulation-linearization technique (Sherali and 

Adams, 1994);  convex hull of (Gupte, et al. 2017)
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Stochastic pre-disaster investment planning

 Considering all the network configurations, the number of scenarios is 

impractically large: 2L. 

 For computational tractability: utilize scenario bundling techniques.

 Laumanns et al. (2014) and Haus et al. (2017) propose very effective 

scenario bundling approaches.

 For example, 230 scenarios is replaced by 223 bundles for 5 O-D pairs.

 In the DRO setting, bundling raises an important issue: 

 An EMD ball around the reduced version of the original distribution is not 

equivalent to considering the reduced versions of the distributions in the 

EMD ball around the original distribution.

 We proved that for our choice of the discrete metric these two ambiguity sets 

are the same.
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Stochastic single-machine scheduling

 L jobs with stochastic processing times; 

 machine breakdowns, inconsistency of the worker performance, 

changes in tool quality, variable setup times, etc. 

 Find a non-preemptive job processing sequence before uncertain 

processing times are realized.

 Sequencing decision variables (linear ordering formulation):

 The set      of feasible scheduling decisions:
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Controllable processing times

 Processing times are stochastic and can be affected by control decisions.

 : random processing time of job l ∈ [L] given control decision

 A variety of schemes can be used to control processing times (e.g., Shabtay and 

Steiner, 2007)

Control with discrete resources: a set of T control options for every job

 Set of feasible control decisions:

 Option t for job l  leads to a random processing time of

Comonotonicity:
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Stochastic single-machine scheduling

 Random outcome of interest: total weighted completion time

 The risk-averse version of our stochastic scheduling problem:

 The robustified risk-averse scheduling problem – discrete ball
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Stochastic single-machine scheduling

 Reformulation (mixed-integer quadratic program):

 Consider the case:

 Wasserstein-1 ambiguity set; 1-norm distance

 Enhanced MIP formulations: Variable and constraint elimination, 

McCormick envelopes,  and reformulation-linearization technique.
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Computational performance
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Numerical Analysis

 Optimal objective function value (robustified CVaR
α

of TWCT) for 

varying radius and budget (L = 15 jobs and n = 100 scenarios)



ICERM, Brown University, June 26, 2019 34

Optimal objective function values and 

solutions for a small illustrative example

 Solution G is only optimal for high values of κ and low values of α, while, 

conversely, solution C is only optimal for lower κ and higher α values.

 Can express a range of risk-averse preferences that would not be possible to 

capture by either a “purely robust” or a “purely CVaR-based” approach.
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Future avenues of research

 Investigate meaningful and tractable characterizations of decision-

dependent nominal parameter realizations and/or scenario probabilities 

for practical applications.

 While scenario bundling is a very effective method of reducing problem 

sizes, most EMDs are not compatible with this approach.

 The total variation metric is a notable exception.

 Other class of outcome-based scenario distances, which give rise to EMDs 

that can be used in conjunction with bundling?

 For problems of practical interest where bundling methods are not 

applicable, one might instead consider sampling methods to reduce the 

number of scenarios.

 Appropriate sampling approaches?
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Robustified risk measures in finite spaces

 Replacing the usual ordering with a parametric family of relations, and 

introducing a corresponding “penalty term”.

 Definition. The relation �τ :

 Robustified expectation: 

 Robustified CVaR: 
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Robustified risk measures in finite spaces

 CVaR serves as a fundamental building block for other law invariant coherent 
risk measures (Kusuoka, 2001)

 Robustified mixed CVaR: 

 Robustified finitely representable risk measures: 
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Controllable processing times

 Processing times are stochastic and can be affected by control decisions.

 : random processing time of job l given decision

 : set of feasible control decisions

 The mapping                                 for an arbitrary prob. space  

 A wide variety of schemes can be used to control processing times 

 Linearly compressible processing times (e.g., Shabtay and Steiner, 2007)

; a special case 

 Control with discrete resources (later)
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Computational performance
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Computational performance

Impact of modeling parameters on performance of CCM-RLT


